2A.2 Sequence and selection

In Section 1 the basic program structures of sequence, selection and iteration were briefly
covered. In this section the use of these structures will be looked at in more detail, with examples
of more complex algorithms.

Sequence

All programs have a series of steps to be followed in sequence. Here is an example in which the
steps are simple assignment statements:

Example 3

OUTPUT "Enter score for Round 1: "

scorel € USERINPUT

QUTPUT "Enter score for Round 2: "

score2 € USERINPUT

averageScore € (scorel + score2) / 2

QUTPUT "The average score is ", averageScore

Sometimes the sequence may be a series of calls to different subroutines which perform different
tasks. Subroutines (functions and procedures) will be covered in Section 2B.1.

Selection

Before locking at algorithms using the different selection statements available in a programming
language, we need to take a closer look at Boolean data types and expressions, since these are
used to determine which path through the program will be taken.

Boolean data type

Boolean variables are either True or False. It makes no sense to perform mathematical
operations on them or to compare them to see which is greater. With Boolean variables we use
logical operators to create Boolean expressions. Suppose that A represents some condition,
for example x < 10, or speed > 30. Logical operations AND, OR and NOT may be used in
Boolean expressions, where:

NOT: IfAis True, then NOT Ais False
AND: IfAis True and Bis True, then (A AND B)is True, otherwise (A AND B)is False
OR: |If either or both of 2 and B is True, then (A OR B)is True,

otherwise (A OR B)is False

Boolean expressions
Boolean expressions are used to control selection statements. For example:

IF speed > 30 THEN
OUTPUT "Control your speed"
ENDIF

A complex Boolean expression contains one or more of the operators AND, OR or NOT. For
example:

IF (X £ 10) OR (CurrentCharNum > LengthOfString) THEN ..
IF (NOT((A = B) AND (A = C))) THEN OUTPUT "Sides not equal"

Write pseudocode statements to check whether a username entered by the user
is equal to either “User1” or “User2". If so, print “Access granted”, otherwise print
“Access denied”.



Nested selection statements
Using a complex Boolean expression is often clearer than using a nested selection structure.

Example 4

Consider an estate agent’s program that searches through a file of house details to find ones that
match a customer’s requirements. In this case the customer wants a house or flat, but it must
have more than three bedrooms.

Using a nested IF statement we could write:

IF Rooms > 3 THEN
IF type = "House" THEN
Output details

ELSE IF type = "Flat" THEN
Output details
ENDIF
ENDIF

It is shorter and clearer to write:

IF (Rooms > 3) AND ((type = "House") OR (type = "Flat")) THEN
Output details
ENDIF

Notice the extra set of brackets around the second half of the expression. AND takes precedence
over OR so without the extra brackets the program would return all the houses with more than
three bedrooms as well as any flats, whether they have more than three bedrooms or not.

Writing robust code

Robust code is code which will not result in the program crashing due to an unexpected user
input. The pseudocode below would crash for some inputs. Why?

numl € USERINPUT
num2 € USERINPUT
OUTPUT numl/num?2

The algorithm needs to be amended so that it will not crash whatever the user enters.

numl € USERINPUT
num2 € USERINPUT
IF (numZ = 0) THEN
QUTPUT "Cannot divide by 0"
ELSE
OUTPUT numl / numZ2
ENDIF



Example 5

A room is to be carpeted using carpet that is 4m wide. The program asks the user to enter the
room dimensions, and if the width is greater than 4, outputs "Carpet not wide enough".
Otherwise, it calculates the length of carpet required by adding 5% to the length of the room.

The following algorithm has been written:

roomLength € USERINPUT
roomWidth € USERINPUT
IF roomWidth > 4 THEN
OUTPUT "Carpet not wide enough"
ELSE
carpetLength € roomLength * 1.05
OUTPUT "Length of carpet required = ", carpetLength
ENDIF

The algorithm could still give the wrong answer if the user entered a width greater than 4, and a
length less than the width, as it assumes that the user always enters the shortest dimension as
the width. The program needs to check for this. Here is the rewritten algorithm:

roomLength € USERINPUT
roomWidth € USERINPUT
IF (roomWidth > 4) AND (roomLength < roomWidth) THEN
temp € roomLength
roomLength € roomWidth
roomWidth € temp
ENDIF
IF roomWidth > 4 THEN
OUTPUT "Carpet not wide enough"
ELSE
carpetLength € roomLength * 1.05
OUTPUT "Length of carpet required = ", carpetlLength
ENDIF







